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The present study develops a data-driven framework trained with high-fidelity simulation results to facilitate

decision making for combustor designs. Its core is a surrogate model employing a machine-learning technique called

kriging, which is uniquely combined with data-driven basis functions to extract and model the coherent structures

underlying the flow dynamics. This emulation framework encompasses a sensitivity analysis of key design attributes,

physics-guided classification of design parameter sets, and flow evolution modeling for a efficient design survey.

A sensitivity analysis using Sobol indices and a decision tree is incorporated into the framework to better inform the

model. The novelty of the proposed approach is the construction of the model through common proper orthogonal

decomposition, allowing for data reduction and extraction of common coherent structures. As a specific example, the

spatiotemporal evolution of the flowfields in swirl injectors is considered. The prediction accuracy of the mean flow

features for new swirl injector designs is assessed, and the flow dynamics is captured in the form of power spectrum

densities. The framework also demonstrates the uncertainty quantification of predictions, providing a metric for

model fit. The significantly reduced computation time required for evaluating new design points enables an efficient

survey of the design space.

Nomenclature

c = design setting (parameter set)
D = Sobol response variance over design range
f = flow property
h = liquid-film thickness at injector exit
L = injector length
M = linear transformation scaling spatial features
p = design parameters
p̂j = jetlike proportion of training dataset
p̂s = swirl-like proportion of training dataset
R = Gaussian correlation function
Rn = injector radius
T = temperature, K
t = time, s
x = spatial coordinate
Z = zero-mean Gaussian process
α = liquid-film spreading angle at injector exit
βj = time-varying coefficients
ΔL = distance between injector inlet and headend
δ = inlet slot width
θ = tangential inlet angle
μ = mean
ρ = density, kg∕m3

ϕj = spatial basis functions

Subscripts

n = number of simulations
u = subset of design parameters u ⊆ f1; : : : ; pg

I. Introduction

F OR high-performance power generation and propulsion
systems, such as those of airbreathing and rocket engines,

physical experiments are extremely expensive due to the harsh
requirements of operating conditions and the high level of system
complexities [1–3]. In addition, it is difficult to gain insight into the
underlying mechanisms of the physiochemical processes involved
because of the reliance upon optical diagnostics for experimental
measurements [4–6].
High-fidelity simulations can be employed to capture more salient

features of the flow and combustion dynamics in engines [7,8]. These
computations, however, are often too expensive and time consuming
for design survey purposes. In the development process for a
propulsion engine, achieving an optimal design requires models
capable of evaluating designs and identifying tradeoffs in a timely
manner. Furthermore, the formulation of such models requires
understanding of key physics and incorporation of decision making
to resolvemultiple, potentially conflicting, requirements. The present
study, as a specific example, treats a simplex swirl injector, which is a
central component of many airbreathing and rocket combustion
devices [9–11]. The model contains rich flow physics. Each high-
fidelity calculation of the three-dimensional flow evolution using the
large-eddy simulation (LES) technique takes about 500,000 CPU
hours to obtain statistically meaningful data for a grid of 4 million
mesh points [12,13]. Given the number of geometric attributes and
operating conditions to be surveyed, the design space exploration
necessitates a prohibitive number of sample points. The situation can
be substantially improved by using design of experiments (DOE)
[14] statistical methodologies to determine the ideal training dataset
for surrogate modeling. With the identification of sensitive injector
parameters, the sample size can be further reduced based on
semiempirical approaches, such as the recommendation of 10 design
points for each parameter proposed by Loeppky et al. [15].
Kriging, a technique originating in the field of geostatistics [16], is

a powerful machine-learning tool for interpolation and prediction.
The key idea is to model unobserved responses using a Gaussian
process (GP) governed by a preset covariance function. The response
surface of the trained krigingmodel can then be obtained by applying
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data-tuned weights to radial basis functions centered at observed

points. Thus kriging can use function values sampled at a set of input
parameters and approximate well the entire function surface over its
domain. With appropriately chosen parameters, the kriging model

provides the best linear unbiased estimator of the responses at designs
that have not been simulated [14]. Furthermore, the resulting

posterior distribution of this prediction will also be Gaussian. For
problems of modeling spatiotemporal flow evolution, the observed

points over the entire design space are sparse because the daunting
computational costs limit the number of affordable simulation cases.
Conventional machine-learning techniques relying on “big data”

over the design space would fail. Rather, the big data lies within the
flowfield information,which encompasses awide range of length and

time scales. The proposed methodology combines machine-learning
techniqueswith domain knowledge of the physical system to build an
accurate emulator model [17]. The inclusion of flow physics allows

the data-driven model to be physically interpretable with enhanced
emulation performance.
The objective of the present study is to develop a kriging model

capable of treating different spatial grids while capturing dynamic
information [17]. The spatial and temporal resolution of all
simulation cases is very fine, making direct use of the raw data for

training a predictor computationally demanding. Not only is there
a need to incorporate data generated from different spatial grids

[18–20] and use data-reduction methods, but the kriging model must
also be extended to multiple, functional outputs. A handful of studies
have been published on multiple-output kriging [21,22] and

functional outputs, including wavelet decomposition [23] and knot-
based GP models [24]. For data with fine spatiotemporal resolution,

unfortunately, these types of methods are inappropriate because of
the substantially increased computation time required [17].
Here, an emulation framework for a spatiotemporal surrogate

model is presented using a simplex swirl injector for demonstration.

A reduced-order model is developed and implemented to handle
large-scale spatiotemporal datasets with practical turnaround times

for design iteration. Recent reduced-order model studies have not
focused on modeling and predicting spatiotemporal flowfields but
rather focusing on closure terms [25–30]. Prior attempts at using

Gaussian process models [31] and decomposition techniques with
Galerkin projection leveraging radial basis functions have shown

some success for unsteady flowfields [32–36]. The proposed model
is trained with datasets that have been classified based on established

physics to reap the benefits of incorporating machine-learning
techniques into the framework. The model can accurately retain the
rich set of physics from LES-based high-fidelity simulations and

predict flow structures.
The present study develops an integrated framework that

incorporates state-of-the-art statistical methods, machine-learning
algorithms, and a physics-driven data reduction method to obtain a

surrogate model over a broad range of design space. The emulation
framework relies on proper orthogonal decomposition (POD) [37]

(also known as the Karhunen–Loeve decomposition in the theory of
stochastic processes [38]) to extract the flow physics and reduce the

data by representing the flowfield with basis functions. This technique
can be combined with kriging to build an efficient and physics-driven
emulator. The common POD (CPOD) analysis is introduced and

conducted by means of a common grid generated from simulations of
the geometries designated by aDOE.Although this approach is similar

to that of Higdon et al. [39] for generalizing a POD expansion, the
novel technique developed herein directly addresses the need for a set

of common basis functions required for a kriging model. In our
companion paper on basic theories [17], the statistical properties of a
broader class of CPOD-based emulators are considered.
The present work applies machine-learning techniques and

investigates the practical performance of the emulator with respect to
flow physics. The emulated flowfield is validated against an LES
simulated flowfield to demonstrate how the flow structures and

injector characteristics are capturedby themodel. In addition, themodel
allows for spatiotemporal uncertainty quantification. Thismetric can be

used to verify the model and quantify underlying flow properties.

The paper is structured as follows. Section II provides the physical
model, describing the baseline configurations, the design points
designated by the DOE, the high-fidelity simulation technique, and
the simulation results. Section III discusses the data-driven emulation
framework proposed for the design methodology and surrogate
model. Section IV details the application of the framework while
assessing the surrogate model using performance metrics, root-
mean-square errors, and the power spectral density (PSD) of
simulated and predicted flowfields. Finally, Sec. V concludes with a
summary and directions for future work.

II. Physical Model Description and Simulations

A. Swirl Injectors

Figure 1 shows a schematic of a simplex swirl injector
representative of those commonly used in applications like liquid-
fueled propulsion engines [9,10]. The five parameters that define the
geometry are injector length L, injector radius Rn, inlet slot width δ,
tangential inlet angle θ, and the distance between the inlet and the
headend ΔL. These design parameters play an important role in
determining the injector performance, including the thickness h, and
spreading angle α, of the liquid film at the injector exit. The selection
of these design parameters is dependent upon engine requirements.
Table 1 shows the design space and the ranges of each parameter
in the present work. To generalize the emulator framework, a broad
range of these parameters is chosen. The injector length covers a
broad range, including those of small upper-stage and large first-
stage engines, or about 22.7 and 93 mm for the RD-0110 [40] and
RD-170 engines [41], respectively.
Liquidoxygenat a temperatureof 120K isdelivered tangentially into

the injector through inlets. The operating pressure is 100 atm, which is
typical of contemporary liquid rocket engines. The ambient gas is
oxygen at 300K. The flow dynamics of this class of injectors have been
systematically investigated in detail by Zong and Yang [12] and Wang
et al. [13].Here,we first conduct a set of high-fidelity simulations based
on conditions in the design space described in Table 1, then extract the
common flow structures for surrogate modeling.

B. Design of Experiments

Given the design space in Table 1, if 10 variations are assigned for
each design parameter, the total number of design points is 105 for a
full factorial design. It is impractical to perform somany simulations,
due to the extensive computing resource required to acquire usable
data. ADOEmethodology is therefore required to reduce the number
of design points and still capture the prominent features in the design
space. To this end, the maximum projection (MaxPro) design
proposed by Joseph et al. [42] is implemented for good space-filling
properties and GP modeling predictions. Thirty points in the
expected range of 5–10p (6p rulewithp � 5, which is the number of
design parameters) points, as suggested by Loeppky et al. [15], and
commonly used in computer experiment literature, are simulated
over the entire design space. The accuracy of prediction should
always be checked to determine whether additional simulations are
needed (see Loeppky et al. [15]). Figure 2 shows a two-dimensional
projection of the 30 simulation runs by MaxPro design, which gives
representative design points distributed to fill the two-dimensional
projection of the design space. Good space-filling properties are
observed for all parameters.

C. High-Fidelity Simulation

An integrated theoretical and numerical framework is established
and implemented to treat supercritical fluid flows and combustion

L

Fig. 1 Schematic of a swirl injector.
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over a broad range of fluid thermodynamic states [43–45].
Turbulence closure is achieved using LES. Thermodynamic
properties are evaluated by fundamental thermodynamics theories
in accordance with the modified Soave–Redlich–Kwong equation of
state. Transport properties are estimated using extended correspond-
ing-state principles [43]. The numerical scheme is a density-based
finite volume methodology along with a dual-time-step integration
technique. The overall algorithm is self-consistent and robust, with
implementation of a preconditioning scheme and a detailed treatment
of general fluid thermodynamics [44,45].
Owing to the demanding computational requirements of three-

dimensional simulations, only a cylindrical sector with periodic
boundary conditions in the azimuthal direction is simulated. The
objective is to ensure that the emulation captures the liquid-film
development within and in the downstream region of the injector
simulation. The azimuthal flow dynamics is not a major concern
because the focus is on developing amodel that retains the physics of
any spatiotemporal flowfield. The discrete injection orifices are
converted into an axisymmetric slot through dynamic similarity. A
multiblock domain decomposition technique, combined with a
message passing interface for parallel computing, is applied to
improve computational efficiency. A typical simulation takes about
30,000 CPU hours on a single Intel Xeon processor to obtain
statistically significant data, with a total span of 30 ms physical time,
after reaching a fully developed state (∼24 ms). The simulated data
are sampled every 30 computational time steps, with 1 μs between
time steps. According to the Nyquist criterion, a temporal resolution
of 16.5 kHz is achieved.

D. High-Fidelity Simulation Results

Thirty high-fidelity simulations at design points defined by
MaxPro were conducted. To isolate the effect of injector parameters,
the mass flow rate for all runs is fixed at 0.15 kg∕s. The first two
design points designated by MaxPro are chosen as the baseline

geometries: A and B in Table 2. The benchmark points used for

assessing the accuracy of the emulator model are obtained by

offsetting the design parameters of these two points.

Figures 3 and 4 show the instantaneous distributions of the

temperature and density for two neighboring design points (C andD in

Table 2), which were selected to indicate different flow features in the

design space. The key flow structures include the swirling liquid film

along the wall due to centrifugal force, liquid accumulation near the

injector headend and associated flow recirculation, and a conical liquid

sheet spreading outward at the injector exit propelled by azimuthal

momentum and a hollow gas core in the center region [12,13].

Various flow physics are observed. The film thickness for design C

is much thinner than for design D, with a larger spreading angle at the

injector exit (34.6 deg as compared to 29.2 deg for design D). Among

the 30 design points, some act like swirling flows, as in design C;

whereas others behave like jet flows, as in designD. For convenience,

the critical value of the spreading angle that separates swirling from

jetlike flows is chosen to be 30 deg; this angle is considered to be an

empirical indicator of whether the liquid stream has significant radial

penetration in the downstream region. When this angle is not

achieved, the liquid does not have enough radialmomentum to spread

outward. The 30 simulation runs are thus divided into two subgroups:

swirling (spreading angle above 30 deg) and jetlike (spreading

angle below 30 deg) flows. In the next section, a machine-learning

technique, known as the decision tree, is introduced to identify the jet-

swirl dichotomy. This directly influences the feature extraction and

kriging processes described in the following sections, as it changes

Table 1 Design space for
injector geometric parameters

Parameter Value

L, mm 20–100
Rn, mm 2.0–5.0
θ, deg 45–75
δ, mm 0.5–2.0
ΔL, mm 1.0–4.0

(mm)

(mm)

(mm)

(degree) 

(mm)

2
4

3
55

75
65

40
80

60

3
5

4
1.

0
2.

0
1.

5

20
45

1

2
0.

5

1.0 2.01.50.53 542

2 43155 75654540 806020

Fig. 2 Two-dimensional projections of design points: benchmark points
(triangles), and baseline and neighboring points (filled circles).

Table 2 Injector geometrics at design points colored
blue in Fig. 2

Design L, mm Rn, mm θ, deg δ, mm ΔL, mm

A (swirl) 20.0 3.22 52.9 0.52 3.42
B (jetlike) 41.9 3.05 65.5 1.57 1.00
C (swirl) 43.1 5.00 70.0 0.50 2.79
D (jetlike) 37.7 2.82 45.8 1.17 3.80

Fig. 3 Instantaneous distributions of temperature and density for
design C.

Fig. 4 Instantaneous distributions of temperature and density for
design D.
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how the design space is partitioned between the identified flow
behaviors. Implicitly, the extracted coherent structures change
slightly, depending on the established criteria separating swirling and
jetlike flows.

III. Data-Driven Framework

Design points may display similar or significantly different flow
structures. In this section, the collected dataset from all 30 high-
fidelity simulations is used to perform a data-driven analysis of the
design space using machine-learning tools. Thework consists of two
components: 1) a sensitivity analysis for identifying important design
parameters with respect to the quantities of interest, where the Sobol
indices [46] are used and b) a decision-tree learning process with
respect to the jet-swirl dichotomy, and the incorporation of this
information into the emulator model. After the sensitivity analysis
and decision-tree learning, a technique called common POD is then
implemented to extract the flow characteristics over the design space.
Lastly, the time coefficients for the obtained basis functions are
employed as training data for the kriging model. This methodology
allows us tomake accurate flowpredictions at any newdesign setting.
A flowchart of the overall data-driven emulator framework is
provided in Fig. 5.

A. Sensitivity Analysis

The first component of this emulator framework is a sensitivity
analysis using Sobol indices [46] to identifywhich design parameters
contribute more to changes in responses of interest, such as liquid-
film thickness or spreading angle. The analysis is also a valuable tool
for parameter reduction. The idea is to decompose the variations of
certain desired output variables into the partial variations attributable
to each input parameter and the effects of interactions between
parameters. Such a method of analyzing sensitivity has close
connections to the classical analysis of variance employed in linear
regression models [47].
To put it in mathematical terms, let f�c� be the desired response

output at design setting c, where c � �c1; c2; : : : ; cp� corresponds to
the input parameters over a unit hypercube �0; 1�p. Specifically, for
the current study, p � 5, c1 � L, c2 � Rn, c3 � θ, c4 � δ, and
c5 � ΔL, with the design range for all parameters normalized to
the interval [0,1]. Define the random variable X as a uniform
distribution over �0; 1�p, and let f0 � E�f�X�� be the response mean
and D � Var�f�X�� be the response variance over the design range.
The goal is to decompose the response variance D into the
contributions for each design parameter c1; : : : ; cp, as well as the
effects of interactions between parameters. Consider the following
decomposition:

f�c� � f0 �
Xp
i�1

fi�ci�

�
X

1≤i<j≤p
fi;j�ci; cj� � : : : � f1;2; : : : ;p�c1; : : : ; cp� (1)

where each summand satisfies

Z
1

0

fi1; : : : ;it�ci1 ; : : : ; cit� dck � 0 (2)

for any k � i1; : : : ; it and has orthogonal components. In Eq. (1), the

main effect index of input i is

fi�ci� �
Z
�f�c� − f0� dc−i; c−i � fc1; : : : ; cpg \ fcig (3)

and the twoway interaction index of inputs i and j is

fi;j�ci; cj� �
Z
ff�c� − f0 − fi�ci� − fj�cj�g dc−i;j;

c−i;j � fc1; : : : ; cpg \ fci; cjg (4)

Squaring both sides of Eq. (1) and taking the integral over �0; 1�p,
we get the following:

D �
Xp
i�1

Di �
X

1≤i<j≤p
Dij �

X
1≤i<j<l≤p

Dijl � : : : �D1;2; : : : ;p (5)

where Du is the partial variance corresponding to a subset of

parameters u ⊆ f1; : : : ; pg:

Du �
Z

f2u�cu� dcu (6)

The Sobol sensitivity indices for parameter subset u can be defined
as follows [46]:

Su � Du

D
∈ �0; 1� (7)

with larger values of Su indicating greater importance of the

interaction effect for u.
In practice, Sobol indices can be estimated as follows. First, a

pseudorandom parameter sequence is generated using a low

discrepancy Sobol point set [48]. Second, this sequence is used to

approximate the aforementioned integrals, which can then provide

estimates for the corresponding Sobol indices. The quantification of

the response sensitivity for each parameter serves two purposes:
1) It provides a preliminary analysis of important effects in the

system, which can guide further physical investigations.
2) It allows for a reduction of the number of parameters that must

be considered in the emulator, thereby providing a computationally
efficient way to survey flow properties within the design space.
A detailed discussion of the sensitivity analysis is presented in

Sec. IV for the current physical model.

Sensitivity Analysis
• Variable screening
• Exploration of flow physics

Decision-Tree Construction
• Supervised learning of jet-swirl boundary
• Design space partition for GP kriging

High-Fidelity Numerical Simulation
• Flowfield simulation
• Response extraction

CPOD Kriging
• Extraction of common coherent structures
• GP training using CPOD time coefficients

Fig. 5 Flowchart for data-driven analysis and emulator construction.
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B. Decision Tree

As mentioned in Sec. II.D, there exists a jetlike/swirling flow

dichotomy within the design space. For simulated design points, it

is easy to classify whether such a parameter combination results in

a jetlike or swirling flow because the flowfield data are readily

available. For design settings that have not been simulated, a data-

driven technique is needed to make such a classification. There are

two reasons why such a classification tool may be of interest. First,

a boundary between jetlike and swirling cases can be established

over the design space of interest, which can then be used to gain

physical insight into the design space and to guide additional

experiments. Second, the classification information can be used to

train separate surrogate models within the jetlike and swirling

domains. This partitioning of the emulator training dataset allows

the model to extract different flow characteristics associated with

jetlike and swirling behaviors separately, and it can thereby

improve its predictive accuracy. A powerful machine-learning tool

“decision tree” is employed for the classification process.
A decision tree is a decision support tool that models decisions and

their possible consequences. Decision trees are one of the most

popular predictive models in data mining and machine learning

[49,50]. Suchmethods are a part of a larger class of learning methods

called supervised learning [51], which aims to predict an objective

function from labeled training data. A classification tree, a special

type of decision tree, is used here. It specializes in predicting

classification outcomes, such as whether a parameter set has a jetlike

or swirling flow. The trained model can be summarized by a binary

tree, separating the design space into two subgroups. Each node of

this tree represents a parameter decision, and each leaf of the tree

indicates the class of outcomes, following the chain of decisions

made from the tree root.
A classification tree can be trained using the following

algorithm (see [52] for details). First, the simulated flowfields of

each sampled design point are examined and classified as either

jetlike or swirling flow, depending on the radial penetration of the

propellant in the downstream region. Next, a search is conducted

over all the design parameters and possible split points, finding

the parameter constraints that minimize misclassification. A

branch is then made in the classification tree corresponding to the

parameter constraint. The same branching procedure is repeated

for each of the resulting child nodes. For the analysis in Sec. IV,

the Gini impurity index [52] is selected as the misclassification

measure:

p̂j�1 − p̂j� � p̂s�1 − p̂s� (8)

where p̂j and p̂s are the proportions of jetlike and swirl cases in a

split. The index measures how often a randomly chosen sample is

incorrectly labeled when such a label is randomly assigned from

the dataset. Notice that a Gini index of zero indicates that

1) p̂j � 1 and p̂s � 0, or 2) p̂j � 0 and p̂s � 1, both of which

suggest perfect classification. When the Gini impurity index is

around 0.5, jetlike and swirl cases are equally distributed. If more

than two groups are considered in the injector dynamics, the Gini

impurity index can be generalized for other numbers of groups,

which can be seen in [52].
This decision-tree learning technique not only provides a means

for partitioning the training dataset for the model into jetlike and

swirling flows but also reveals physical insights on the important

design parameter constraints causing this jet-swirl dichotomy. The

quantification of this split is achieved through the calculation of the

Gini impurity. The Gini index is a criterion to minimize for

classification. Note that 0.5 is the worst classification possible, but

the optimization procedure aims to find the best classification

possible (i.e., one with the smallest Gini index). If this optimal

classification with two categories is not good enough, then the

approach should be generalized for classification trees with more

than two categories. The interpretability of these constraints is

elaborated on in Sec. IV.

C. Kriging Surrogate Model (Emulator)

The primary objective of thiswork is to develop an emulatormodel
that uses data from 30 simulation runs to predict the flowfield of a
new design point within a practical turnaround time. With the tools
described above (the sensitivity analysis for parameter screening and
the decision tree for partitioning the design space into jet-swirl cases),
a surrogate model for flowfield emulation is proposed. The kriging
surrogate model, also known as an emulator, combines machine-
learning techniques, statistical modeling, and a physics-driven data
reduction method. A brief description of each part of this model
is provided before delving into the specific mathematical details.
A complete description of themodel development from the statistical
perspective is given in [17].
First, the proposedmodel is constructed through a PODanalysis of

the simulation dataset used for training. For a given flow property f,
the POD analysis determines a set of orthogonal basis functions ϕj

such that the projection of the property onto these basis functions has

the smallest error, defined as E�kf − f̂k2�, where E�⋅� and k ⋅ k
denote the time average and norm in the L2 space, respectively [37]:

f̂�x; t� �
Xn
j�0

βj�t�ϕj�x� (9)

The basis functions, ormode shapes, are spatial distributions of the
fluctuating fields of flow properties, which can be closely linked to
physical phenomena and coherent structures. The basis functions are
ordered in such a way that the lowest modes have the highest
“energy,” as defined by the inner product of f. The flow properties for
POD analysis include pressure, density, temperature, and velocity
components. POD decomposition yields not only the eigenfunction
modes ϕj, but also their corresponding time-varying coefficients βj,
which are referred to as POD coefficients. It should be noted that this
process is not completed for the entire dataset, with physical variables
being processed separately. To treat the data together, the scaling and
dimensions need to be carefully formulated to obtain interpretable
mode shapes.
Although the usage of POD simplifies the complex nature of a

spatiotemporalmodel, a common set of basis functions is required for
the emulator in order to accommodate different injector geometries.
Physically, thismeans that a common set of coherent structures needs
to be extracted over the design space. One option is to select a
computational region of interest that is unaffected by any design
changes [53]. Taking advantage of the basis functions generated by
the POD analysis, an emulator can be obtained as long as a set of
common basis functions exists. One of the challenges for the current
study is the wide disparity of geometries in the design space, as
illustrated in Fig. 6. The present work uses a common grid for the 30
grid systems to find a set of common basis functions. To achieve this,
the densest grid system among all cases is identified and split into
four sections covering the effects of design parameters on the
simulated grid. This partitioned grid is used for interpolation and
rescaling of each simulated case to obtain a common grid. Then, an
inverse distance weighting interpolation method with 10 nearest-
neighborhood points is used to map the original raw data onto the
common grid [54]. Algorithmically, the CPOD expansion is obtained
by first rescaling the different cases to the common grid, then
computing the POD expansion, and finally rescaling the resulting
modes back to the original grid [17].
Because of the limited variation of the Reynolds number among

the different injector geometries, the scaling of the data to the
common grid is appropriate in the present study. The smallest injector
diameter of concern is 4 mm, with a corresponding exit velocity of
27.5 m∕s. With the liquid oxygen density of 1000 kg∕m3 and the
viscosity of 0.114 cP, the Reynolds number based on the injector
diameter is about 9.6 × 105. The largest injector diameter in the
design space has a value of 10 mm, and the corresponding exit
velocity is 11 m∕s. At the same operating condition, the Reynolds
number is about 9 × 105. For some geometries where the liquid film
does not produce a noticeable spreading angle, the Reynolds number
is reduced to about 9 × 105. Despite this difference, the model is
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capable of avoiding excessive smoothing, provided the correlation

function is bounded correctly. Such scaling of POD modes to

establish common basis functions is vital to the emulator. It should be

noted that the scaling is only appropriate for flow simulations that do

not exhibit distinctively different physical phenomena, such as those

of reacting-flow simulations, where the mode shapes change

drastically. Additional similarity parameters may be necessary when
different physics and chemical reactions are incorporated, as noted by

Dexter et al. [55].
The mathematical details for CPOD are provided in the following

[17]. Suppose n simulations are conducted at various design

geometries c1; : : : ; cn and let f�x; t; ci� be the simulated flowfield at

design ci for a given time t and spatial coordinate x. The kth CPOD
mode is defined as

ϕk�x� � argmax
ψ : kψk2�1

Xn
i�1

Z �Z
Mi�ψ�x��f�x; t; ci� dx

�
2

dt;

s:t:

Z
ψ�x�ϕl�x� dx � 0; ∀ l < k (10)

Here, themapMi:R
2 → R2 is the transformation that linearly scales

spatial features from the common geometry c to the ith geometry ci.
The sequence of POD coefficients is defined as follows:

βk�ci; t� �
Z

Mifϕk�x�gf�x; t; ci� dx (11)

with the corresponding POD expansion using K modes given by the

following:

f�K��x; t; ci� �
XK
k�1

βk�ci; t�Mifϕk�x�g (12)

The transformation allows for the extraction of common basis

functions. In addition, the obtained modes can be used to identify key

mechanisms of flow dynamics. It should be noted that reacting-flow

simulations are characterized by additional dimensionless parameters

and linear mapping may not perform well when combustion is

involved.
Two computational challenges need to be addressed to implement

this methodology. As previously mentioned, to calculate the inner

product of the snapshots from different simulation cases, a common

set of spatial grid points is needed. Not only does the calculation of

the inner product become a computational bottleneck because the

covariance matrix consists of snapshots from each simulation, the
number of modes required to capture a certain energy level is

significantly increased relative to an individual simulation, which

needs approximately six modes to capture more than 95% of the total

energy [12]. The computation of CPOD modes and associated time-

varying coefficients requires eigendecomposition of a nT × nT
matrix, where n is the number of simulation cases and T the number

of snapshots. This usually requires O�n3T3� computation work.

A typical value for T is 1000 snapshots spanning 10 ms, which
achieves a frequency resolution of 100 Hz. An iterative method of
eigendecomposition based on periodic restarts of Arnoldi decom-
positions is then used to quickly calculate the first few eigenvectors
with the largest eigenvalues. These eigenvalues can also be interpreted
as the amount of the energy as defined by the inner product used to
calculate the covariance matrix. For a particular reconstruction using a
linear combination of POD modes and associated time-varying
coefficients, there is reconstruction error, which decreases when more
eigenvectors (the POD modes) are included.
Next, a kriging model is applied to the CPOD time-varying

coefficients βk�ci; t�. With the mean and variance computable in
closed form, uncertainty quantification and confidence intervals can
be calculated easily. Kriging (and, more generally, GP-based
learning) has been applied to great success in a variety of fields [56].
The mathematical approach of kriging is described here. For
notational simplicity, let β�c� denote βk�c; t�, which is the k-th CPOD
coefficient at setting c and time step t. As the temporal resolution is
fine, there is no practical need to estimate temporal correlations,
especially because predictions will not be made in between time
steps. This time-independent emulator uses independent kriging
models at each instant of time, assuming the following GP model:

β�c� � μ� Z�c�; Z�c� ∼ Nf0; σ2R�⋅;⋅�g (13)

Here, μ is the mean, Z�c� is a zero-mean GP with variance σ2, and
R�⋅;⋅� is a prespecified correlation function governed by unknown
parameters η. A typical choice for R�⋅;⋅� is the so-called Gaussian
correlation function:

R�ci; cj� � exp

�
−
Xp
k�1

ηk�cik − cjk�2
�

(14)

where p is the number of input parameters.
Now, suppose the function values β�n� � �β�ci��ni�1 are observed at

input settings fcigni�1, and let cnew be a new setting for which
prediction is desired.Conditional on the observedvalues β�n�, the best
linear unbiased estimator of β�cnew� can be shown to be [14]

β̂�cnew� � μ� rTnewR
−1�β�n� − μ1� (15)

Here, 1 is the n × 1 vector of ones,

rnew � �R�ci; cnew��ni�1

is the n × 1 vector of correlations between the new point and sampled
points, and

R � ��ci; cj��ni�1
n
j�1

is the covariance matrix for the sampled points. Such a predictor
minimizes the mean-squared prediction error (MSPE), a which is

Case 1

Case 9

Case 22

Case 25

Case 10

Case 24

Case 2

Fig. 6 Schematics of different injector geometries in the design space.
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commonly used criterion for prediction error. In the context of
flowfield prediction, employing this kriging estimator allows us to
obtain accurate flow predictions from the CPOD coefficients. It can
also be shown [14] that this best MSPE predictor is unbiased,
matching the expected and true function values.
To close the formulations, the model parameters μ, σ2, and η need

to be trained using data. A technique called maximum likelihood
estimation (MLE), which is a ubiquitous estimation technique in
statistical literature [57], is employed. The key idea in MLE is to
search for the optimal parameter setting thatminimizes the likelihood
function of the GP model. In the present work, optimization is
achieved bymeans of the L-BFGS algorithm [58], which is a method
employed for many training algorithms. Amore detailed explanation
can be found in the work of Santner et al. [14].
The kriging models are trained independently over each time step,

due to the inherent fine-scale temporal resolution of the simulation.
This time-independence assumption is made for two reasons. First,
the fully developed flow is treated as statistically stationary and has
high-frequency resolution, so there is no practical value for
estimating temporal correlations. Second, as in the high-fidelity
simulation procedure, the assumption of time independence allows
exploitation of parallel computation in training the emulator model.
Once the model is trained, the predictor is used with the CPOD
expansion to predict the flow evolution at a new design point, that is,

f̂�x; t; cnew� �
XK
k�1

β̂k�cnew; t�Mifϕk�x�g (16)

It is worth noting that the computation time of the proposed model
is orders of magnitude smaller than that of LES. Simulation data that
typically take aweek, or around 30,000 CPU hours, to acquire can be
predicted by the model with an associated uncertainty in a manner of
tens of minutes. The full emulator model and algorithm are provided
in the statistical paper [17],which considered the statistical properties
of a broader class of models. The current paper focuses on applying
new machine-learning techniques and investigates the practical
performance of the emulator with respect to flow physics.

IV. Results and Discussion

A. Sensitivity of Injector Geometrical Parameters

The liquid-film thickness and spreading angle are two important
injector characteristics. An inviscid incompressible-flow theory
predicts the spreading angle as a function of solely the geometric
constant [9,10], and it increases with increasing geometric constant.
For real fluids at supercritical conditions as treated in the present
study, the fluid density varies continuously [12,13]. The spreading
angle can be determined based on the slope of the maximum density
gradient near the injector exit in a time-averaged sense. As the
maximumdensity gradient is used as the boundary for liquid film, the
spreading angle and film thickness have variances related to how
prominent the maximum density peak appears in the radial direction.

To gauge the importance of each injector parameter on the liquid-
film thickness and spreading angle, a sensitivity analysis using a

Monte Carlo estimate of Sobol indices was performed [46]. Figure 7
shows the primary effects from this sensitivity analysis. The points

indicate the Sobol index estimate for each design parameter, with
lines indicating the Monte Carlo integration error for each index
estimate. The lines were calculated based on a 95% confidence

interval of the estimate. The slot width (δ) was found to be the
parameter with the largest Sobol index, and thus the strongest
influence on the spreading angle. Physically, this could be explained

by how geometric parameters govern the inlet flow properties.
Assuming a constant mass flow rate, the incoming velocity was

inversely proportional to the slot width, and a decrease in slot width
increased liquid-film momentum, increasing the momentum of the
liquid film.
Similarly, the tangential inlet angle (θ) and the slot width

significantly affect the liquid-film thickness, whereas the length

(L) and radius (Rn) of the injector have minor effects. The
tangential inlet angle controls the direction of momentum. As the
injector angle increases, more azimuthal momentum is imparted to

the liquid film, thereby increasing the spreading angle at the
injector exit. The length and radius can dictate how much viscous

loss is experienced by the propellant as it travels in both the axial
and azimuthal directions. The present study, however, has shown
viscous losses to be a minor effect. Referring to Eq. (7), larger

values of Su indicate greater importance of the interaction effect for
u. When juj � 1, the sensitivity is called the mean effect index.
Suppose juj � 1, anothermeasure of sensitivity often considered is

the total effect index, whichmeasures the contribution to the output
of a given input Xu, including all interactions of Xu with other
inputs. That is,

Tu � Su �
X
l∈uc

Sl∪u ∈ �0; 1�

where uc is the complementary set of u. Similarly, larger values of

Tu indicate greater importance of the effect for u.
Figure 8 shows the two-factor interaction effects. It further

demonstrates that themain design parameters are the slot width and
the tangential inlet angle (interaction effect circled in blue), which
couple to affect the liquid-film response. This is hardly surprising

because the slot width and inlet angle govern the flow area and
direction of momentum, respectively. The mass and momentum

conservation equations are inherently coupled to govern the
flowfield.
As previously mentioned, the empirical geometric constant for a

swirl injector can be employed to estimate the film thickness and
spreading angle, using the hydrodynamics theories described by

Bazarov and Yang [9] and Basarov et al. [10]. These theories,
however, are based on the assumption of incompressible, inviscid
flows and can only be used as a preliminary guide. In real injectors,

viscous and compressibility effects must be considered. The liquid
viscosity results in boundary-layer formation along the walls, which

- Significant/minor effect
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Fig. 7 Sensitivity analysis of liquid-film thickness and spreading angle.
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causes spatially nonuniform velocity profiles. A primary effect of
compressibility lies in the existence of acoustic waves [12,13]. The
supercritical conditions within high-pressure systems make these
effects even more pronounced. High-fidelity simulations taking into
account real-fluid effects are required to address these issues [12,13].

B. Decision-Tree Exploration of Injector Design Space

With further examination of simulated design points, a clear
distinction exists between two different types of underlying physics.
One type is the expected swirling film that noticeably spreads radially
upon exiting the injector. The other is a jetlike behavior of the liquid
film where the radial spreading is weak. The DOEmethodology uses
space-filling properties such that design points in both regimes are
simulated. This section explores how to efficiently incorporate this
information into the CPODmethodology to refine prediction results.
Designs A and B (geometric parameters are listed in Table 2) are

each arbitrarily chosen, from among the simulated design points, as
baseline geometry for determining offdesign points. By offsetting
injector parameters, two benchmark design points are obtained
(denoted as red points in Fig. 2). Design A is classified with swirling
behavior. Although design B is classified with jetlike behavior in its
developing stage, the flowfield transitions to a swirling flow in its
stationary state. This trend may be an indicator that design B is near
the jet-swirl regime boundary. Its stationary statewas used to classify
this hybrid physics case.
A full design tradeoff study requires quantifying how every

parameter affects key performance metrics. Hence, all injector
variables are retained for the first benchmark: E. The second
benchmark, F, only varies design parameters with significant effects
on the liquid-film response. The corresponding geometries are shown
in Table 3. For benchmark E, each design parameter deviates�10%
from that of design A. With normalized parameters, the distance
traversed in the design space is estimated to be about 18.1%, as
calculated in the L2 linear sense.
The sensitivity study showed that the injector radius and the

injection location had less effect than the slot width and tangential
inlet angle on the film thickness and spreading angle. They are thus
fixed, and the other three parameters are offset from design B by
−10% to explore the design space at benchmark F. The closest two
simulation points are designs C and D. The neighboring points are
provided because design B seems to be near the jet-swirl dichotomy.
The second component of the data-driven framework for the

design survey is a decision tree [51,52]. Figure 9 shows the decision-
tree splitting process, indicating how the algorithm decides the way
an injector parameter dictates whether the flow is jetlike or swirling.
The initial decision between the two behaviors is achieved by
assessing the extent towhich the liquid film spreads radially from the

injector exit. The numeric outputs are essentially binary flags
between the two subgroup classifications. For example, the first
numeric output of θ < 60.02 deg, splits the dataset into 11 jetlike and
19 swirl cases. The decision tree then further classifies the data
according to the injector inlet and radius. Intuitively, when the
tangential inlet angle θ, is smaller, there is less azimuthal momentum
in the liquid film to cause radial spreading. When the injector inlet δ,
becomes large, the decreased momentum results in jetlike behavior.
The decision tree quantifies these effects and predicts a jetlike
injector with θ < 60.02 deg and δ > 1.40 mm. Following the
previous two criteria, if the tangential inlet angle is large enough (that
is, θ > 49.24 deg), the injector retains swirling behavior.
The two benchmark cases are used to verify the decision tree.With

such an algorithm, simulation results can be predicted using the
model with proper training data. As the next section will further
detail, the emulator relies upon the set of common basis functions
extracted from the dataset. With two different types of underlying
coherent structures, the two datasets should be trained separately to
predict design parameter sets that lead to their corresponding flow
behavior.

C. Surrogate Model

To train an emulator and make predictions, a set of common basis
functionsmust be used as previouslymentioned. Figure 10 shows the
process of the common grid generation. The red lines partition the
axisymmetric domain for each case into five regions: injector
headend region, injector interior, and three subregions downstreamof
the injector. The densest grid system among the 30 training cases is
selected as the common grid, upon which the partitioned regions for
all other cases are then scaled to the corresponding regions in the
common grid. This scaling is designed such that the ensuingmodel is
able to leverage common basis functions, without significantly
changing the flow features of interests. It should be noted that the
scaling has a marginal impact upon liquid-film development
visualization within the injector, which has the broadest range among

Interaction Effects for Spreading Angle Response Interaction Effects for Film Thickness Response
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Fig. 8 Two-factor interaction of liquid-film thickness and spreading angle.

Table 3 Injector geometries for benchmark cases

Benchmark L, mm Rn, mm θ, deg δ, mm ΔL, mm

E 22.0 3.22 58.2 0.576 3.42
F 37.7 3.06 59.0 1.417 1.00

mm  mm  

jet

jet swirl

swirl

jet swirl

jet

swirl

Fig. 9 Decision-tree splitting process with numeric classifiers.
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the design parameters. The original data are interpolated with an
inverse distance weighting interpolation method using the 10 nearest
neighborhood points to retain the fine points in regions of interest,
specifically near the liquid film. The results on the common grid are
used for the POD analysis.
Figure 11 shows the energy spectrum of the azimuthal velocity

captured by the CPOD analysis. This spectrum is chosen as a
demonstrative example because the overall behavior is shared by all
other physical variables. Forty-five CPOD modes are required to
retain 99% of the energy and limit the corresponding truncation error
for the reconstruction. The leading two modes are presented in
Fig. 12, with both indicating swirling flow structures with dominant
fluctuations near the injector wall. The flow evolution within the
injector and subsequent liquid-film development downstream of the
exit are clearly observed.
The kriging of time-varying coefficients combinedwith the CPOD

modes allows for emulation of the spatiotemporal evolving flow at a

new design point. The CPOD modes represent the common physics

extracted from the training dataset. A new injector geometry is

assumed to produce similar flow physics including a hollow gas core,

a swirling liquid film attached to the wall, and a conical liquid sheet

spreading outward at the injector exit. Figure 13 shows snapshots of

the temperature field for the simulation and emulations of benchmark

E (L � 22.0 mm, Rn � 3.22 mm, θ � 58.2 deg, δ � 0.576 mm,

and ΔL � 3.42 mm). For the temperature CPOD analysis, 2000

modes, out of the 30,000 modes that can be extracted, are required to

capture 90% of the energy and are used for the prediction. Good

agreement is obtained, illustrating the same qualitative trends for the

flow structures, with a liquid film along the injector wall and a center

recirculating flow downstream of injector. The POD analysis can be

interpreted as a spatial averaging technique using the covariance

matrix of the flow variable of interest. Some flow details, such as the

surfacewave propagation of the liquid film,may be smoothed out due

to averaging. This concern, however, can be addressed effectively

using the aforementioned statistical and optimization algorithms to

tune GP model parameters. The resultant emulator model thus

mitigates the smoothing effects and captures the flow structures well.

common griddesign point 30

design point 1 design point 2

Fig. 10 Schematic of common grid generation process.

Fig. 11 Energy spectrum of CPOD modes for azimuthal velocity
component for benchmark E.

Fig. 12 First two CPODmodes of azimuthal velocity for benchmark E.

Fig. 13 Comparison of instantaneous temperature distributions for
benchmark E.

Fig. 14 Comparison of mean liquid-film thickness along axial distance.

YEH ETAL. 2437

D
ow

nl
oa

de
d 

by
 G

E
O

R
G

IA
 I

N
ST

 O
F 

T
E

C
H

N
O

L
O

G
Y

 o
n 

A
ug

us
t 3

0,
 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.J
05

66
40

 



1. Response Performance Metrics

As a preliminary comparison, a kriging surrogate model was

applied to the extracted liquid-film thickness and spreading angle

at the injector exit. The training process was implemented for the

30-case dataset. The following discussion is based on benchmark E: a
swirl case. The liquid-film thickness is estimated, based on

hydrodynamics theories, to be 0.618 mm; and the spreading angle

91.8 deg. The single-point emulator predicts a liquid-film thickness

of 0.520 mm and a spreading angle of 99.0 deg. The data are
compared with the simulation results of 0.430 mm and 103 deg,

respectively. Figure 14 shows thevariation of the film thickness along

the injector wall.
At the injector exit, the time-averaged film thickness and spreading

angle predicted by the kriging surrogate model are 0.420 mm and

107 deg, corresponding to percentage errors of 2.38 and 3.88%,

respectively. The model matches the simulation in terms of key
features such as the liquid-film distribution and spreading angle,

which are performance measures needed for assessing injector

design.
For benchmark F, the baseline case (design B) develops from jetlike

to swirling behavior, as shown in Fig. 15. The design parameters are

near a critical hyperplane separating different flow features.
Figure 16 shows the time-mean temperature distributions for the

two benchmark cases. The accumulation of liquid propellant at the
injector headend is observed in both results. The liquid-film thickness

and spreading angle match well. For benchmark case F, which

produces a jetlike flow, a standing wave appears in the upstream

portion of the injector. The emulation result captures the wavy
structure only to some extent. In the downstream region, the liquid-

film thickness and spreading angle are better predicted. In the region

where the film breaks apart, less propellant appears in the simulation
result.

2. Root-Mean-Square Relative Error

The root-mean-square-relative error (RMSRE) is defined by

RMSRE�t;S� � �RS ff�x; t;cnew�− f̂�x; t;cnew�g2 dx∕jSj�1∕2
max�f�x; t;cnew��−min�f�x; t;cnew��

× 100%

(17)

Fig. 15 Time evolution of the temperature for baseline case for
benchmark F.

Fig. 16 Mean temperature distributions for benchmark cases:
a) swirl-like case and b) jetlike case.

Table 4 RMSRE of temperature distribution

Benchmark Overall, % Upstream, % Downstream, %

E (swirl) 5.18 6.62 3.10
F (jetlike) 8.65 8.30 9.03

Fig. 17 Time-mean temperature distribution in radial direction for benchmark E.
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where S is the desired region, jSj is the number of grid points under
S, f�x; t; cnew� is the simulated flowfield at geometry cnew,
f̂�x; t; cnew� is the emulated flowfield, and max�f�x; t; cnew�� and
min�f�x; t; cnew�� are the maximum and minimum values of
f�x; t; cnew� over x, respectively.
Table 4 lists the RMSRE for the two benchmark cases. This

quantitatively compares the simulation and emulation shown in
Fig. 16, illustratingminor discrepancies near the injectorwall. For the
jetlike case, the error is reduced if only upstream results (that is,
upstream of the injector exit) are considered.

Figure 17 shows the time-mean temperature distribution in the

radial direction at various axial locations for benchmark E. The high

gradient region represents the transition between the liquid film and

the gas core. There is a slight deviation in this transition region,where

the simulated temperature gradient is sharper than that of the

emulation. Similar results, not shown, are also obtained for

benchmark F.

To illustrate the importance of incorporating the decision tree

within the framework, a comparison is madewith the prediction from

an emulator without dataset classification [17]. Table 5 lists the

RMSRE for the two benchmark cases using the emulator trainedwith

the entire dataset. Benchmark E results are slightly worse, and

benchmark F's prediction is significantly off.

Next, the axial velocity is used as training data, demonstrating the

capability of modeling other flowfield variables. Figure 18 shows the

time-mean distribution comparison between the simulation and

emulation for benchmark E. The key flow features, such as the

gaseous core and swirling film, are predicted well. The RMSREs

listed in Table 6 numerically outperform temperature results. This

improvement can be explained by the broader range, which leads to

higher errors.

Figure 19 shows the time-mean axial velocity distribution in the

radial direction for various axial locations in the injector for

benchmark E. The transition region is matched, with a deviation near

the injector centerline where the gradient is smoother in the emulator

prediction. Similar results, not shown, were seen for benchmark F.

3. Injector Dynamics

Injector dynamics cover a wide range of time scales, which can be

quantified using a power spectral density analysis. Figure 20 shows

the position of the pressure probes in the fluid transition region.

Injector dynamics involve downstream pressure fluctuations

causing pressure drop oscillations across the liquid film. These

changes, in turn, trigger mass flow rate variations across the

tangential inlets [9,10], over a wide range of time scales. The probes

are located near the film surface to measure dynamics like this

mechanism. A spectral analysis can quantify these oscillations and

capture the periodicity of flow features. Mathematically, the PSD can

be interpreted as the Fourier transform of the autocorrelation function

for a signal. The pressure PSDs are calculated for both the simulation

Table 5 RMSRE temperature distribution results
(without dataset classification)

Benchmark case Overall, % Upstream, % Downstream, %

E (swirl) 5.93 6.70 5.09
F (jet) 13.2 7.43 17.7

Fig. 18 Mean axial velocity distribution for benchmark E.

Table 6 RMSRE velocity distribution results

Benchmark Overall, % Upstream, % Downstream, %

E (swirl) 4.12 4.58 3.64
F (jet) 3.97 4.71 2.85

Fig. 19 Axial variation of velocity distribution in the radial direction for benchmark E.
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and emulation results. Figure 21 shows the PSDs of probes 1, 3, 5 and
7; the frequency content is observed to be well quantified.
The high-frequency oscillations that are typically present in swirl

injectors that have a vortex chamber are not prominent. Most of the
signal comprises low-frequency content, representing surface wave

propagations along the film. In addition, acoustic waves propagate,

couple, and interact with hydrodynamic waves, appearing as several
different frequencies. The simulated and emulated probes show

similar dynamics, such that the peak frequencies of the simulation

and emulation results match. However, the emulator amplifies the
dominant frequencies because the kriging model may be overfitting

slightly due to insufficient data. Despite this signal strengthening

phenomenon, the analysis displays the modeling capability for flow
dynamics, properly capturing the simulated periodic oscillations.

Downstream of the injector exit, the dynamics become more

broadband and no dominant oscillations appear, because there exist
strong interactions between the shear layer and recirculation zone

generated from vortex breakdown.

4. Uncertainty Quantification

In addition to the aforementioned validationmethods, the emulator
model also allows for quantification of predictive uncertainty that can

be used to define confidence intervals for model fit. Moreover, these

uncertainties can be linked to dynamic flow physics. As an example,
the spatial uncertainty quantification is shown in Fig. 22, displaying

the one-sided width of the 80% confidence interval for the pressure

and temperature (a derivation of this interval is found in [17]).
The uncertain areas, in the time-mean temperature distribution,

correspond to the most dynamic sections of the liquid transition
region. The downstream uncertainty is caused by the recirculation
induced through vortex breakdown.

5. Computation Time

Figure 23 presents the simulation and emulation timeline. The
computation times are calculated based on performance for a
parallelized system of 200 Intel XeonE5-2603 1.80GHzprocessors.A
total of 900,000 CPU hours is required for the 30 GB dataset. CPOD
extraction and parameter estimation for the model takes about 45 min.
The parallelized predictions from the developed model only

need around 30 CPU hours, significantly reducing the turnaround
time as compared with LES requiring 30,000 CPU hours. This
improved computational efficiency is crucial because it enables
quick design iterations. The existing spatiotemporal emulators
mentioned in the Introduction (Sec. I) require much more
computation time to fit the underlying statistical model because the
training dataset of each simulation is too large to directly
manipulate [22]. By carefully using physical knowledge to make
informed model assumptions, state-of-the-art machine-learning
techniques have been leveraged to develop a methodology offering
an efficient strategy to survey the design space.

Fig. 20 Probe positions along liquid-film surface.

Fig. 21 PSD results of pressure fluctuations for probes 1, 3, 5, and 7.

Fig. 22 One-sided width of the 80% confidence interval for benchmark
E: temperature and pressure predictions.
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V. Conclusions

The present work develops an integrated framework that
incorporates state-of-the-art statistical methods, machine-learning
algorithms, and a physics-driven data reduction method to obtain a
surrogate model for a broad-range design space. Taking a swirl
injector as an example, the common POD (CPOD)-based emulation
framework is used to extract the flow physics, reduce the data, and
build an efficient physics-driven emulator.
The key contributions are twofold: the use of statistical and

machine-learning techniques to quantify the impact of design
parameters on important flow physics, and the incorporation of such
methodswith physics-guidedmodel assumptions to build an efficient
surrogate model for flowfield prediction. Avital model assumption is
that theCPOD,which is the common basis, accurately retains the rich
set of physics over varying geometries. This model successfully
captures the simulation results and fares better than analytical
estimations for performance measures. The emulated flowfield is
validated against the LES-simulated flowfield to demonstrate how
the flow features and injector characteristics are preserved by the
model. Moreover, this methodology significantly reduces the
computational time required for assessing a design based on
spatiotemporal information.While the focus of the present study is on
a data-driven analysis and emulation of flow physics, the principle of
applying machine-learning techniques with physics-guided assump-
tions can be applied to any type of engineering application.
For future work, additional investigation should be carried out in

dynamic regions of the flowfield, where the surrogate model has
higher predictive uncertainties. One potential cause is the extreme
range of the design points; this can be addressed by setting a smaller
range. The uncertainty quantification and propagation of underlying
flow couplings are also important research directions, which can
perhaps be tackled using techniques such as support points.
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